Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation.
نویسندگان
چکیده
The Bacillus subtilis McpB is a class III chemotaxis receptor, from which methanol is released in response to all stimuli. McpB has four putative methylation sites based upon the Escherichia coli consensus sequence. To explore the nature of methanol release from a class III receptor, all combinations of putative methylation sites Gln(371), Gln(595), Glu(630), and Glu(637) were substituted with aspartate, a conservative substitution that effectively eliminates methylation. McpB((Q371D,E630D,E637D)) in a Delta(mcpA mcpB tlpA tlpB)101::cat mcpC4::erm background failed to release methanol in response to either the addition or removal of the McpB-mediated attractant asparagine. In the same background, McpB((E630D,E637D)) produced methanol only upon asparagine addition, whereas McpB((Q371D,E630D)) produced methanol only upon asparagine removal. Thus methanol release from McpB was selective. Mutants unable to methylate site 637 but able to methylate site 630 had high prestimulus biases and were incapable of adapting to asparagine addition. Mutants unable to methylate site 630 but able to methylate site 637 had low prestimulus biases and were impaired in adaptation to asparagine removal. We propose that selective methylation of these two sites represents a method of adaptation novel from E. coli and present a model in which a charged residue rests between them. The placement of this charge would allow for opposing electrostatic effects (and hence opposing receptor conformational changes). We propose that CheC, a protein not found in enteric systems, has a role in regulating this selective methylation.
منابع مشابه
The role of heterologous receptors in McpB-mediated signalling in Bacillus subtilis chemotaxis.
Asparagine chemotaxis in Bacillus subtilis appears to involve two partially redundant adaptation mechanisms: a receptor methylation-independent process that operates at low attractant concentrations and a receptor methylation-dependent process that is required for optimal responses to high concentrations. In order to elucidate these processes, chemotactic responses were assessed for strains exp...
متن کاملSite-specific methylation in Bacillus subtilis chemotaxis: effect of covalent modifications to the chemotaxis receptor McpB
The Bacillus subtilis chemotaxis pathway employs a receptor methylation system that functions differently from the one in the canonical Escherichia coli pathway. Previously, we hypothesized that B. subtilis employs a site-specific methylation system for adaptation where methyl groups are added and removed at different sites. This study investigated how covalent modifications to the adaptation r...
متن کاملCheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis.
For the Gram-positive organism Bacillus subtilis, chemotaxis to the attractant asparagine is mediated by the chemoreceptor McpB. In this study, we show that rapid net demethylation of B. subtilis McpB results in the immediate production of methanol, presumably due to the action of CheB. We also show that net demethylation of McpB occurs upon both addition and removal of asparagine. After each d...
متن کاملCheB is required for behavioural responses to negative stimuli during chemotaxis in Bacillus subtilis.
The methyl-accepting chemotaxis protein, McpB, is the sole receptor mediating asparagine chemotaxis in Bacillus subtilis. In this study, we show that wild-type B. subtilis cells contain approximately 2,000 copies of McpB per cell, that these receptors are localized polarly, and that titration of only a few receptors is sufficient to generate a detectable behavioural response. In contrast to the...
متن کاملCheC is related to the family of flagellar switch proteins and acts independently from CheD to control chemotaxis in Bacillus subtilis.
Chemotaxis by Bacillus subtilis requires the inter-acting chemotaxis proteins CheC and CheD. In this study, we show that CheD is absolutely required for a behavioural response to proline mediated by McpC but is not required for the response to asparagine mediated by McpB. We also show that CheC is not required for the excitation response to asparagine stimulation but is required for adaptation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 32 شماره
صفحات -
تاریخ انتشار 2000